WINTERSEMESTER 2015/16 - NICHTLINEARE PARTIELLE
DIFFERENTIALGLEICHUNGEN

Homework #14 due 02/05/2016

Problem 1. Verify that the shallow water equations
(bt + (U¢>x =0

U2
vﬁ—(;—kgﬁ) =0

form a strictly hyperbolic system as long as ¢ > 0.

Solution. Note that
[gb] N {U ﬂ V]
v], 1 v| |v .

The Matrix B = 11} f has the eigenvalues A = v & \/¢ which are real and distinct if

and only if ¢ > 0.

Problem 2. Consider the matrix function

1722 [€08(2/2)  sin(2/z) -
A {siné[éz)g]cof@/z)} iiz

a.) Show that B € C°(R; R**?).
Proof. Recall that the function

eV for 240
f(z)—{ 0 for 2=0

is in C*° and that all derivatives at z = 0 vanish. Furthermore, each derivative decays to
zero faster than 2™ as z — 0 for all m € N. Hence, each entry of the function B(z) is
also in C'*° since all derivatives can be continuously extended to z = 0 by zero. U

b.) Prove that there do not exist eigenvectors r1(z), r9(z) depending continuously on
z near 0. What happens to the eigenspaces as z — 0 7

Proof. Compute, for z £ 0

dot A—e V7 cos(2/2)  —e YV sin(2/2)
—e V¥ sin(2/2) A4 e V¥ cos(2/2)

_ 4 2 _ 4 2 _ 4
=N e Vo’ 2 — eV gin2 2 = N2 — V2
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—1/22

which gives the two eigenvalues A = —e~Y=* and X\, = ¢ . The corresponding nor-

malized eigenvectors are

r(z) = 2—2tos<2/z> {1—_55?5%?)} for cos(2/2) #1.
m for cos(2/z) =1,
and
s ] e e,
m for  cos(2/z) = —1.

With a little bit of trigonometry, these eigenvectors can be written as

ne = | Cah) e e =[S

which has the advantage that it shows that the normalized eigenvectors are C'*° for all
z # 0. However, there is no limit for = — 0. Indeed, for all € > 0 there exist |z;| < ¢ for
j = 1,2 such that r(z1) = (1,0)7 and ry(22) = (0,1)7. O

Problem 3. a.) Consider the initial value problem (Riemann Problem) for Burgers’s
equation
Uy + ut, =0 fort >0,xreR,

0 forz<0
u(O,x)—{ 1 forz>0

Prove that
0 for z<0
T I S
1 for x>t

are both integral solutions to Burgers’s equation.

Proof. Recall that an integral solution u of a conservation law is an essentially bounded
function which satisfies the integral identity

/OOO /R[uvt + f(u)v,| dedt = — /RQ(I)U(O,x) du

for all v € C§°(R?) where g are the initial data.
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In order to verify that u is an integral solution, one computes for v € C§°(R?) the
integral

(9] ) t T ZE2 ) [e%e] 1
/ /[uvt + u?v, /2]dxdt :/ / {—vt + ﬁvxl dxdt +/ / {vt + 51}4 dxdt
0o JR t
/ / —vt dtdx + / / 5V dxdt
0
/ / vy dtde + / / —vx dxdt
Ooo oo t T
:/ / U dtdx — / (z,x dx—/ / t—ZU dzdt
0 0 o Jo
+ 1 / t)dt + h v(x
2 0

_/0 v = [ Lottty de = /Ooov(O,ar)dx

which proves that u is an integral solution to the Riemann problem. For @ one has to
compute the same integral

(o) o o0 o 001
/ /[ﬂvt—l—ﬂ%r/ﬂdl‘dt:/ / vy dxdt—i—/ / —v, dxdt
o Jr o Ji2 o Ji2 2
/Ood/oo d dt+/001 (t,1/2) dt 1/00 (1.1/2) dt
= — vdx ~u(t, — = v(t,
o dt Jyp 0o 2 2 Jo
:—/ v(0,x) dz
0

and the desired identity has been verified. 0
b.) Find an integral solution to Burgers’s equation with the initial condition

0 for <0
uw0,2) =<9 1 for O<z<l1
0 for x>1

Does your solution satisfy the entropy condition F'(w;) > o > F'(u,) ?

Solution. Following the discussion on Burgers’s equation from the lecture, it suggests that
the entropy solution is given by

0 for <0
Z for O<zx<t
_ t
ult, x) = 1 for t<ax<l4t/2 7
0 for z>1+1¢/2

at least for 0 < ¢t < 2 since for ¢ > 2 this function is not well-defined. The formula above
suggests that for ¢t > 2 the area where u = 1 disappears and that

0 for <0
2 for 0<w<s(t) |,
0 for x> s(t)

u(t,x) =
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where s(t) is the curve along which the solution is discontinuous (shock curve). In order
to have an integral solution the solution needs to satisfy the Rankine-Hugoniot condition
[F(u)] = «'(t)[u] where the shock curve is expressed as a function x(¢). In this case one

* Flu)— Flw) o2/

U — Uy v/t 2
Hence, z(t) = C+/t for t > 2 and the condition x(2) = 2 gives 2(t) = v/2t. The condition
x(2) = 1 follows from the fact that z(t) = 1 +¢/2 for 0 < ¢ < 2. In summary, the formula
for the integral solution for t > 2 is given by

0 for <0
u(t,g) =¢ £ for 0<az<V2t
0 for z>+2t
Finally one verifies that u satisfies the Lax shock condition F’(u;) > 2/(t) > F'(u,). Note
that F'(u) = u and that then

Fmg:% Flu,) =0, 2'(t)=—.



